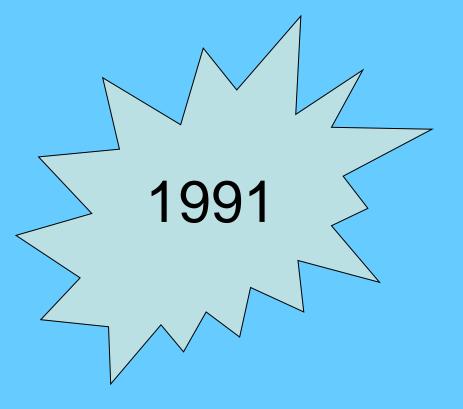
Bringing together the East and the West: Joining ideas, people, datasets

Sirje Keevallik

Marine Systems Institute at Tallinn

University of Technology

1990


ГОСКОМГИДРОМЕТ = State Committee for Hydrometeorology

Positive side:

- Similar equipment
- Unified measurement methods
- Detailed instructions for personnel

Negative side:

- Raw data classified
- •International cooperation centralised WMO, IUGG, COSPAR...

New possibilities?

August 3-8, 1992 Tallinn

The first meeting of interested people from the East. **Ehrhard Raschke** explains his expectations:

- To describe water and energy cycles in the Baltic Sea catchment area following the examples of other GEWEX regional-scale experiments
- To unite meteorology, hydrology and oceanography
- To collect as much data as possible

May 1994, The First Meeting of the BALTEX Science Steering Group at Geesthacht

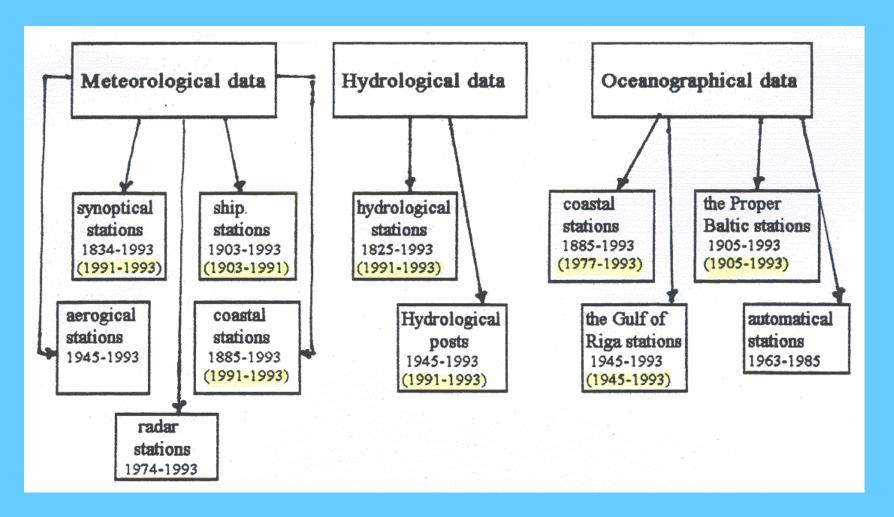
BALTEX Secretariat established at GKSS with **Hans-Jörg Isemer** as project scientist

Data centres founded:
Hydrological – Sweden, SMHI
Meteorological – Germany, DWD
Oceanographic metadata – Finland, FIMR

A preliminary list of **data requirements** for atmospheric and hydrological modelling

What was needed first?

Meteorological data and solar radiation Hydrological data – precipitation, snow depth, river runoff, soil moisture Sea level data


Historical data

- 1986 1987 (key period for reanalysis)
- 1992 1993 (key period)

Real-time and non-real time data

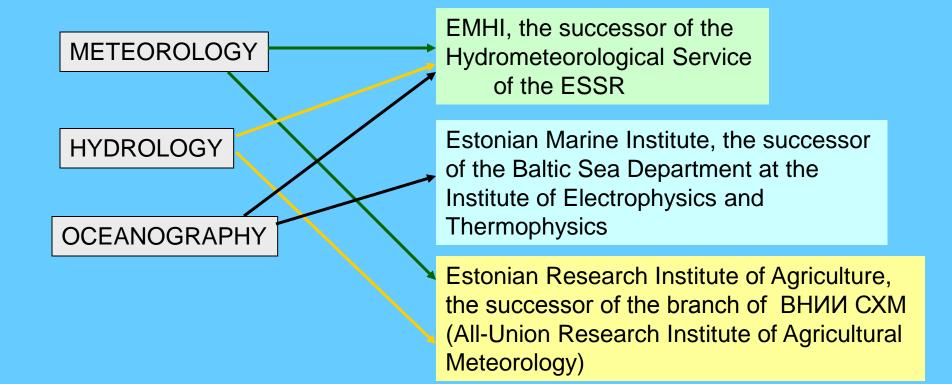
August to October 1995 (PIDCAP)


What do we have?

Latvia: We have all, but only partly in digital form

Formation of the hydrometeorological data base until 1991 in Estonia

- Data were coded in the stations and written on magnetic tapes
- Tapes were sent to Obninsk (ВНИИГМИ-МЦД = Research Institute of Hydrometeorological Information of the USSR World Data Centre)
- Tables were printed at Obninsk and sent back to Tallinn


Meteorological archive until 1991

CTAHUNA II	RPHY			4 5	TANLE	5844450	FOA	1971	MECRL 1	NOC	K.97	1 4 3	WHE	Eth	нено	E) 00	. 0.3	100	. 63	, ,	10. 2
					*****	*******			********	*****		***		***	****	******	******		*****	*****	
1 TEMME	PATYPA	, rpaa,	INAPU.	TOTH.	TUE +h.	I ATM. A	ABUENAR	FIBAR	NANSTAMBY	1	9		A . A	4 H	0 0	T 6	Inor	CAA	I BET	ep t	
401803Ay+	1 008.	TONK-	I HARRY	I BAIV	THEFT	7 44 45	us Ja	****	- asn - 175h	1 607	# 80 J		9000	MIN	N.S.	1 34 4	HN-I W	101	Inene		PEARKE
I XA	100485	POES	I rns	inson	4 1/114	TOTANGUM	#OP4	INP.	PHATUMOS	1 0 1	H 2	65:	ASIC	815	1 4 8	1 * 1	CT.I W	188	IFPAR	I M / CI	MM.
								Res .										5			
2 -1.0	- 1	-0.2	0,01	9.2	0,51	1004,0	1004.9	3	410	*10					0 5	*>00	8		300	2	
3 0,6	+1	-2.7	5.51	86	0.42	1001.6	1011,3	8 7	2.7	10	10			0		050	5	10	210	0	
4 0+1	=0	w0.8	5.78	94	5.37	992.9	993.5		1.9		10			2		550	8	85	0	0	
5 1.0	+0	0.8	4.47	9.6	0.38	997.9	998.8	7	1.1	*10		0		0		450	2	2	250		
0 3,2	= 0	191	6,62	86	1.06	999.0	1000.5	3	0,3	*10		0		0		950	ė	2	800	7	
7 1.9	=0	0.0	6,10	87	0,90	989,2	990.1	7	110		10			0		310	0	61	150		
8 2,2	=0	0.6	0,38	59	0.05	998,2	994.6	2	211	10	10	8		0		370	8	8.0	240		
10 4.2	0	0,3	55.0	75	0,78	990,5	991,4		1,0	10	10	8		1		430	8	2.5	200	12	
11 4,5	2	376	6,00	9.5	0.42	979.4	980.3	6	2+4	5	2	0		0	100	**00	6	21	240	10	
12 -0,1	= 0	+3.5	4.72	78	1.34	1001.8	100279		1.6	10	10			0		770	2	8	330	3	
13 1.5	+0	0,7	0,42	9.4	0+39	1000,6	1007.5		0:4	+10		0		0	0 5	340	8	5	210	4	
16 -6,6	4.7	.8.7	3,10	83	0.63	1038,2	1033,2	2	1:2 4	0	0	0		0	0.00		0	8	270		
15 -2.5	- 2 0	-5.1	5,76	52	0.89	1038.5	1037.5	2 7	215	1000000	*10	0		0 1		660	2	8	350	1	
17 -2.0	-5	-2.9	4,05	94	0.35	1030.1	1031,1	,	0.8	10	10	0	STATE OF THE PARTY.	*	0 0	990	5	10	290		
15 -1.8	-1	+372	4.84	87	0.75	1030.8	1031.6		0.0	10	10		10000	0		320	2	2	270	2	
19 1+1	=0	0.0	0.11	45	0.30	1030,6	1031,0	2	0.3	10	10	6	8	0	0	300	5	10	250	2	
20 1.4	0	+0;8	5,74	85	4.05	1032,7	1023.7	2	0 + 2	*10		0		0		480	2	2	215	4	
21 1,6	*0	-013	5,00	89	0.22	1019.3	1060.3	7	215	10	10	4		0		320		10	200		
23 1.5	-0	-1,0	9,66	89	1,15	1025.6	1027.6	2	2,3	10	10	8 0	-	0 1		370	5	5	355		
24 3.2	-0	+0.4	5,84	76	1.54	1012.6	1013,5	9	0.9	0		ő	0.25	0		***	2	2	110		
25 -1.8	44	+4.2	4.47	84	0.88	1024.0	1025.0		0.0	10	0	3		0 1			2	2	270	4	
26 5,6	0	110	6,55	7.1	2.67	1001.8	1002.7	7	0 4 4	10	0		2	0 1	0		2	2	300	9	
27 -5.4	-6	-1005	2,70	67	1,53	1026.2	1087,2		315	*10	0	3		0 1		10000	2	- 2	40	3	
28 =1.2	-0	+2,2	3,18	85	1,01	1025.0	1026.0	2	0.3	10	10			0		360	8 2	85	330		
30 -13.5	=14	-17.2	1,31	68	0.05	1032.3	1035.3		2.9	0	o.	0		0		200	3	36	60		
31 -12,9	-12	+1772	1,59	72	0.08	1038.1	1039,1	8	0.3	. 0	0	0		0 1			2	1	150	- 3	
1 0,0	-2	+1,8	5.37	8.8	0.76	1000,1	1007.0		211	10	10			0	0.00	+00	8	. 2	270	. 2	
2 -1,0	-5	-2,3	3,10	91	0.25	1010.4	1011.3		0.1	10	10	*		0 1		250	2	10	0	0	
3 0,2	-0	0,3	1,70	92	0,50	997.3	688.5	2	4.4	10	10			0 1	6 6	350	7 8	71	250		
5 1.7	-0	9.6	0.39	93	0.31	999,4	1000,3	3	1.5	10	10			0		380	2	2	210	1	
6 3,0	-0	1,/2	0,05	88	0,92	999.6	1000:8	- 6	0.0		+10	0		0		840	6	2	200	5	
7 1.7	-0	0,9	0,52	94	0.38	954.7	987:4	7	2,5	10	10	8	8	0 1		270	6	63	190	5	
8 1.6	+0	0.2	6,18	89	0.77	994.7	775.6	8.	1:0	10	10	8		0 3		740	8	2	500	2	
9 2.2	*0	1,4	6,38	89	0,78	995.8	999.9	2	0.6	*10	*10	0		2 1		890	8	67	210		
11 4.3	- 2	371	7,62	92	0,08	979.2	980.1	,	2.5	6	- 4	0		6		**00	6	5 5	240	12	-
12 +2.1	-1	-4.0	4,53	0.5	0.71	1003.1	1004.0		1,3	0	0	0		0 1			2	2	300		
13 1,4	+0	0.0	6,12	91	0.04	100830	1008.0	3	114	10	10			0 1		300	8		310	3	
14 -3,8	*6	47.75	3,59	78	1,02	1032.5	1033.5		0,3	0	0	0		0 (3.7		0	2	260	4	
16 0.2	+3	+1,5	9,10	84	0,00	1037.7	1038.7	1	1,2	10	10			0		260	2	2	10		
17 +1.7	-2	-3,1	4,85	88	0,74	1023.2	1036,2	,	0.5	10	10	0		0 0		300	2	5	245		
18 -1.0	-2	-3.0	4,89	9.0	0.34	1030.8	1031.4	4	0.0	10	10	8	200	0 1		300	2	2	190	2	
19 1.1	0	-0.6	5,86	8.9	0.75	103104	1052.4	2	0 + 8	10	10	8		0 1		400	2	10	260	3	
20 0.9	0	+1:1	5,64	87	0.08	1032.2	1033,2	. 8	0.5	10	10	8	No. of Concession, Name of Street, or other	0 5		360	2	2	200	7	
21 1.2	=0	0.1	0.15	65	0.51	1016.8	1017,8	20	2,5	10	10	8		0 (420	7	6.6	210		
23 1.1	+0	+1.5	3,47	87	0.88	1029.3	1030,3	7	219	10	10	8		0 1		920	2	5	25	1	
24 2.2	+1	-4.6	4.36	61	2,80	1013.5	1014.4	3	0.0	0	0	0		0 0		100	- 2	- 1	120		
25 -1.9	4.6	+5.7	4,65	8.8	0.00	1021.2	1042.2	- 6	2,5		0	5	4	0 (2	ž	255	6	
26 4,2	0	0.0	0.09	24	2,15	1004,1	1005.0	3	2.3	10	10	8		0 1		360	2	5	300		
27 -0,8	-6	-11.0	2,65	72	1,02	1027.6	104864	-	114	10	0	3	200	0 1			5	5	9.0	3	
28 -0.2	-1	-2.2	5,18	80	0.84	1024.6	1023,6	2	0.7	10	10		0.70	0 0		460	8	5	340	3	
30 -14.6	*16	-18,9	1,38	7 t	0,59	1033.6	101500		1,3	10	0	0	-2	0 0			3	5	65		
31 +12.5	+12	-10.5	1,64		0.70	1037.8	1038.8	7	0,3	*10	4		1			****	2	3	170	3	
						1127	111111		23												144
											78										-

1992-1993, Estonia

No centralised data processing any more Data collected and stored at different institutions

BALTEX Workshops

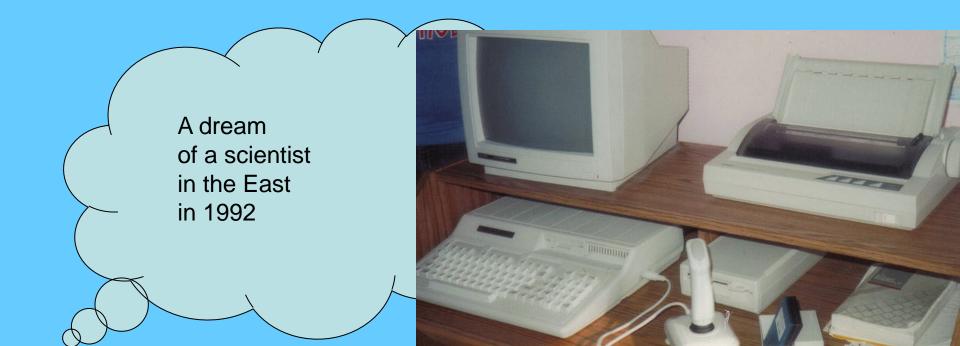
• 6-7 June 1994, Vilnius, Lithuania

14-15 November 1994, Minsk, Belarus

26-27 June 1995, St. Petersburg, Russia

28-30 May 1996, Wroclaw, Poland

• 29-31 October 1996, Tallinn, Estonia


• 21-22 October 1999, Tallinn, Estonia

21-22 July 2000, Jelgava, Latvia

How to accelerate the digitizing?

- Contracts between GKSS and hydrometeorological services of Russia, Estonia, Latvia, Lithuania, Belarus and Poland
- Additional salaries to people who digitize data
- PCs and printers to eastern countries

Which instruments are used?

	Former	Poland and	Denmark	Sweden	Finland
	USSR	Germany			
Gauge	Tretjakov	Hellmann	Hellmann	SMHI	H&H-90
					Tretjakov
Wind	yes			yes	yes
shield					
Wetting	By types		By types		
correction			and		
			months		

Example: Manual precipitation measurements

What is the resolution?

Estonia: Every 10 days 3 levels (20-80cm)

Finland: Every 5 days 14 levels (0-400cm)

Germany: 3 times a day 6 levels (2-100cm)

Latvia: Every 3 hours 6 levels (2-40cm)

Lithuania: Every 3 hours 4 levels (5-20cm)

Example: Soil temperature measurements

Which units are used?

Estonia: Hourly and daily totals (MJ/m²)

Finland: Hourly and daily mean values (W/m²)

Sweden: Hourly mean values (W/m²)

Poland: Daily totals (J/cm²)

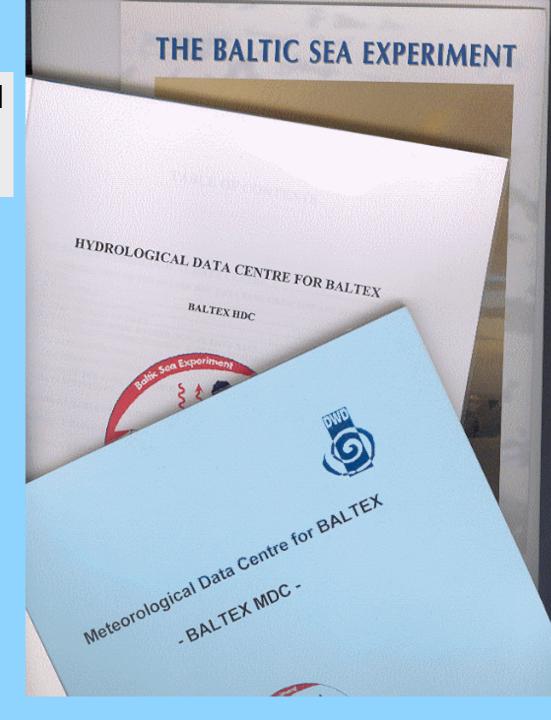
Latvia & Lithuania: Calculated as a sum of direct and diffuse

radiation on a horizontal surface

Example: Global radiation measurements

By 2002 the data era ended together with the BALTEX Phase I

Phase II 2003 - 2012


A multi-disciplinary programme for environmental research in the Baltic Sea drainage basin

A European contribution to the Global Energy and Water Cycle Experiment and World Climate Research Programme



What did the East gain?

- The inventory of measurement routine and equipment was accelerated
- Data processing was intensified
- The foundation to digital data base was laid
- The access to the data stored at the BALTEX data centres was made available
- The BALTEX Study Conferences gave the possibility to young scientists to find contacts in the West

What did the West gain?

- A new look on their own data
- Personal contacts –
 visiting scientists from the East
- BALTEX Study Conferences as a wonderful meeting point
- Data over the whole catchment area

The year 2013

The conditions and activities in West and East are similar:

- Weather services cooperate to give better weather forecast
- Research groups cooperate to apply for money and promote science

The problems are common:

- Automatic weather stations are not always reliable
- Long time series are not always homogeneous
- etc

The End

Thank you!